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ABSTRACT

To feed the high degrees of parallelism in modern graphics proces-

sors and manycore CPU designs, DRAM manufacturers have cre-

ated new DRAM architectures that deliver high bandwidth. This pa-

per presents a simulation-based study of the most common forms of

DRAM today: DDR3, DDR4, and LPDDR4 SDRAM; GDDR5 SGRAM;

and two recent 3D-stacked architectures: High Bandwidth Memory

(HBM1, HBM2), and Hybrid Memory Cube (HMC1, HMC2). Our

simulations give both time and power/energy results and reveal

several things: (a) current multi-channel DRAM technologies have

succeeded in translating bandwidth into better execution time for

all applications, turning memory-bound applications into compute-

bound; (b) the inherent parallelism in the memory system is the

critical enabling factor (high bandwidth alone is insufficient); (c)

while all current DRAM architectures have addressed the memory-

bandwidth problem, the memory-latency problem does still remain,

dominated by queuing delays arising from lack of parallelism; and

(d) the majority of power and energy is spent in the I/O interface,

driving bits across the bus; DRAM-specific overhead beyond band-

width has been reduced significantly, which is great news (an ideal

memory technology would dissipate power only in bandwidth, all

else would be free).
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1 INTRODUCTION

In response to the still-growing gap between memory access time

and the rate at which processors can generate memory requests [46,
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60], and especially in response to the growing number of on-chip

cores (which only exacerbates the problem), manufacturers have

created several new DRAM architectures that give today’s system

designers a wide range of memory-system options from low power,

to high bandwidth, to high capacity. Many are multi-channel inter-

nally. This paper presents a simulation-based characterization of

the most common DRAMs in use today, evaluating each in terms

of its effect on total execution time and power dissipation.

We have updated DRAMsim2 [50] to simulate nine modern

DRAM architectures: DDR3 [24], DDR4 [25], LPDDR3 [23], and

LPDDR4 SDRAM [28]; GDDR5 SGRAM [29]; High BandwidthMem-

ory (both HBM1 [26] and HBM2 [27]); and Hybrid Memory Cube

(both HMC1 [18] and HMC2 [19]). The DRAM command timings

are validated, and the tool provides power and energy estimates

for each architecture. To obtain accurate memory-request timing

for a contemporary multicore out-of-order processor, we integrate

our code into gem5 and use its DerivO3 CPU model [3]. To high-

light the differences inherent to the various DRAM protocols, we

study single-channel (and single-package, for those that are multi-

channeled within package) DRAM systems. Doing so exposes the

fundamental behaviors of the different DRAM protocols & architec-

tures that might otherwise be obscured in, for example, extremely

large, parallel systems like Buffer-on-Board [9] or Fully Buffered

DIMM [14] systems.

This study asks and answers the following questions:

• Previous DRAM studies have shown that the memory over-

head can be well over 50% of total execution time (e.g.,

[10, 11, 53]); what is the overhead today, and how well

do the recent DRAM architectures combat it? In particular,

how well do they address the memory-latency and memory-

bandwidth problems?

As our results show, main memory overheads today, for

single-rank organizations, are still 42ś75% for nearly all ap-

plications, even given the relatively modest 4-core system

that we study. However, when sufficient parallelism is added

to the memory system to support the bandwidth, which can

be as simple as using a dual-rank organization, this overhead

drops significantly. In particular, the latest high-bandwidth

3D stacked architectures (HBM and HMC) do well for nearly

all applications: these architectures reduce the memory-stall

time significantly over single-rank DDRx and LPDDR4 ar-

chitectures, reducing 42ś75% overhead down to less than

30% of total execution time. These architectures combine

into a single package all forms of parallelism in the memory

system: multiple channels, each with multiple ranks/banks.

The most important effect of these and other highly parallel

architectures is to turn many memory-bound applications
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to compute-bound applications, and the total execution time

for some applications can be cut by factors of 2ś3x.

• Where is time and power spent in the DRAM system?

For all architectures but HBM and HMC, the majority of time

is spent waiting in the controller’s queues; this is true even

though theworkloads represent only a small number of cores.

Larger systems with dozens or hundreds of cores would

tend to exacerbate this problem, and this very phenomenon

is seen, for example, in measured results of physical KNL

systems [48]. For HBM and HMC systems, the time is more

evenly distributed over queuing delays and internal DRAM

operations such as row activation and column access.

Power breakdowns are universal across the DRAM architec-

tures studied: for each, the majority of the power is spent

in the I/O interface, driving bits over the bus. This is an

extremely good thing, because everything else is overhead,

in terms of power; this result means that one pays for the

bandwidth one needs, and the DRAM operations come along

essentially for free. The most recent DRAMs, HMC espe-

cially, have been optimized internally to the point where the

DRAM-specific operations are quite low, and in HMC rep-

resent only a minor fraction of the total. In terms of power,

DRAM, at least at these capacities, has become a pay-for-

bandwidth technology.

• Howmuch locality is there in the address stream that reaches

the primary memory system?

The stream of addresses that miss the L2 cache contains a

significant amount of locality, as measured by the hit rates

in the DRAM row buffers. The hit rates for the applications

studied range 0ś90% and average 39%, for a last-level cache

with 2MB per core. (This does not include hits to the row

buffers when making multiple DRAM requests to read one

cache line.) This relatively high hit rate is why optimized

close-page scheduling policies, in which a page is kept open

if matching requests are already in the controller’s request

queue (e.g., [30, 47]), are so effective.

In addition, we make several observations. First, łmemory latencyž

and łDRAM latencyž are two completely different things. Memory

latency corresponds to the delay software experiences from issuing

a load instruction to getting the result back. DRAM latency is of-

ten a small fraction of that: average memory latencies for DDRx

and LPRDDRx systems are in the 80ś100ns range, whereas typi-

cal DRAM latencies are in the 15ś30ns range. The difference is in

arbitration delays, resource management, and whether sufficient

parallelism exists in the memory system to support the memory

traffic of the desired workload. Insufficient parallelism leads to long

queuing delays, with requests sitting in the controller’s request

buffers for tens to hundreds of cycles. If your memory latency is

bad, it is likely not due to DRAM latency.

This is not a new concept. As has been shown before [10], more

bandwidth is not always better, especially when it is allocated

without enough concurrency in the memory system to maintain

it. Execution time is reduced 21% when moving from single-rank

DDR3 channels to dual-rank channels. Execution time is reduced

22% when moving from a single-channel LPDDR4 organization

to a quad-channel organization. Execution time is reduced 25%
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Figure 1: Top: as observed by Srinivasan [54], when plotting

system behavior as latency per request vs. actual bandwidth

usage (or requests per unit time), three distinct regions ap-

pear. At low bandwidth usage, latency is nearly constant. As

bandwidth usage increases, the latency increases linearly.

In high-performance systems, the maximum sustainable

bandwidth is usually 75–80% of the maximum theoretical

bandwidth. As an application’s request rate approaches this

value, the requests are arriving so frequently it strains the

system’s capacity, and latencies grow extremely high, ex-

tremely quickly. Bottom: when a second memory system

with a much higher maximum bandwidth is evaluated run-

ning the same workload, the second system (bottom graph)

will exhibit constant latency in regions where the lower-

bandwidth system (top graph) experiences linear or even ex-

ponential latency.

for some apps when moving from a 4-channel organization of

HBM to an 8-channel organization. And when one looks at the

reason for the reduction, it is due to reduced time spent in queues

waiting for memory resources to become free. Though it may sound

counter-intuitive, average latencies decrease when one allocates

enough parallelism in the memory system to handle the incoming

request stream. Otherwise, requests back up, and queuing delays

determine the average latency, as we see in DDRx, LPDDR4, and

GDDR5 based systems. Consequently, if one’s software is slow due

to latency issues, consider improving your NoC, or increasing the

number of controllers or channels to solve the problem.

Second, bandwidth is a critical and expensive resource, so its allo-

cation is important. As mentioned above, having enough bandwidth

with parallelism to support it can reduce execution time by 2ś3x

and turn some previously memory-bound apps into compute-bound

apps. This is a welcome result: one can bring value to advanced

processor-architecture design by simply spending money on the

memory system. Critical rule of thumb to note: multicore/manycore

architectures require at a minimum ∼1GB/s of sustained memory

bandwidth per core, otherwise the extra cores sit idle [54].
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The use of capacitors as data cells has led to a relatively complex

protocol for reading and writing the data, as illustrated in Figure 3.

The main operations include precharging the bitlines of an array,

activating an entire row of the array (which involves discharging

the row’s capacitors onto their bitlines and sensing the voltage

changes on each), and then reading/writing the bits of a particular

subset (a column) of that row [20].

Previous studies indicate that increasing DRAM bandwidth is

far easier than decreasing DRAM latency [4, 10ś12, 20], and this is

because the determiners of DRAM latency (e.g., precharge, activa-

tion, and column operations) are tied to physical constants such as

the resistivity of the materials involved and the capacitance of the

storage cells and bitlines. Consequently, the timing parameters for

these operations are measured in nanoseconds and not clock cycles;

they are independent of the DRAM’s external command and data

transmission speeds; and they have only decreased by relatively

small factors since DRAM was developed (the values have always

been in the tens of nanoseconds).

The most significant changes to the DRAM architecture have

come in the data interface, where it is easier to speed things up by

designing low-swing signaling systems that are separate from the

DRAM’s inner core [44]. The result is the modern DDR architecture

prevalent in today’s memory systems, in which the interface and

internal core are decoupled to allow the interface to run at speeds

much higher than the internal array-access circuitry. The organiza-

tion first appeared in JEDEC DRAMs at the first DDR generation,

which introduced a 2n prefetch design that allowed the internal

and external bandwidths to remain the same, though their effective

clock speeds differed by a factor of two, by łprefetchingž twice

the number of bits out of the array as the number of data pins on

the package. The DDR2 generation then doubled the prefetch bits

to 4x; the DDR3 generation doubled it to 8x, and so on. This is

illustrated in Figure 2, which shows the decoupling data buffer that

lies between the core and I/O subsystem. The left side of this buffer

(the core side) runs slow and wide; the right side (the I/O side) runs

fast and narrow; the two bandwidths are equal.

This decoupling has allowed the DRAM industry to focus heav-

ily on improving interface speeds over the past two decades. As

shown in Figure 3, the time to transmit one burst of data across the

bus between controller and DRAM is measured in cycles and not

nanoseconds, and, unlike the various operations on the internal

core, the absolute time for transmission has changed significantly

in recent years. For instance, asynchronous DRAMs as recent as

the 1990s had bus speeds in the range of single-digit Mbps per pin;

DDR SDRAM appeared in the late 1990s at speeds of 200 Mbps per

pin, two orders of magnitude faster; and today’s GDDR5X SGRAM

speeds, at 12 Gbps per pin, are another two orders of magnitude

faster than that. Note that every doubling of the bus speed reduces

the burst time by a factor of two, thereby exacerbating the already

asymmetric relationship between the data-access protocol (opera-

tions on the left) and the data-delivery time (the short burst on the

right).

The result is that system designers have been scrambling for

years to hide and amortize the data-access overhead, and the prob-

lem is never solved, as every doubling of the data-bus speed renders

the access overhead effectively twice as large. This has put pressure

in two places:

• The controller design. The controller determines howwell

one can separate requests out to use different resources (e.g.,

channels and banks) that can run independently, and also

how well one can gather together multiple requests to be

satisfied by a single resource (e.g., bank) during a single

period of activation.

• Parallelism in the back-end DRAM system. The back-

end DRAM system is exposed as a limitation when it fails

to provide sufficient concurrency to support the controller.

This concurrency comes in the form of parallel channels,

each with multiple ranks and banks.

It is important for system design to balance application needs with

resources available in the memory technology. As previous research

has shown, not all applications canmake use of the bandwidth that a

memory system can provide [49], and even when an application can

make use of significant bandwidth, allocating that resource without

requisite parallelism renders the additional bandwidth useless [10].

In simpler terms, more does not immediately translate to better.

This paper studies which DRAM architectures provide more, and

which architectures do it better. The following sections describe

the DRAM architectures under study in terms of their support for

concurrency and parallel access.

CLK

CLK#

CMD ACT CAS

ADDR ROW COL

DATA D0 D1 D2 D3 D0 D1 D2 D3

CAS

COL

DQS

row activation
to rank n

column access 
to rank n

column access 
to rank m, m ≠ n

one-cycle bubble inserted between 
back-to-back reads to different 
ranks (DQS hand-off)

tRCD tCL or tCAS tBurst

Figure 4: DDR SDRAM Read timing.

3.1 DDRx SDRAM

As mentioned above, the modern DDRx SDRAM protocol has be-

come widespread and is based on the organization shown in Fig-

ure 2, which decouples the I/O interface speed from the core speed,

requiring only that the two bandwidths on either side of the inter-

nal data buffer match. One of the distinguishing features of DDRx

is its data transmission, which occurs on both edges of a data clock

(double data rate, thus the name), the data clock named the DQS

data-strobe signal. DQS is source-synchronous, i.e, it is generated

by whomever is driving the data bus, and the signal travels in the

same direction as the data. The signal is shown in Figure 4, which

presents the timing for a read operation.

In our simulations, we use a DIMM organization as shown in

Figure 5(a): a 64-bit data bus comprising eight x8 DRAMs.

3.2 LPDDRx SDRAM

Low Power DDR SDRAMmakes numerous optimizations to achieve

the same bandwidth as DDRx, in the same multi-drop organizations

(e.g. multi-rank DIMMs), but at a significantly reduced power cost.

Optimizations include removing the DLL, strict usage of the DQS

strobe, and improved refresh.
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Figure 5: DRAM bus/interface organizations simulated in this study.

Another optimization for LPDDR4 is that each device is not

only internally multi-banked, it is internally multi-channel[28].

Each device has two control/address buses, two data buses, and

the specification describes the Quad-Die Quad-Channel Package:

it has four dies and four separate buses, each 16 bits wide, with

16 bits coming from each of two devices in an overlapped, dual-

rank configuration. This is an incredible amount of parallelism in a

small, low-power package and approaches the parallelism (if not

the bandwidth) of HBM.

In our simulations, we model LPDDR4 in two different ways that

are common: first, we use a DIMM like that in Figure 5(a). Second,

we simulate the the Quad-Die, Quad-Channel Package shown in

Figure 5(b).

3.3 GDDR5 SGRAM

The DDRx standards have provided high bandwidth and high ca-

pacity to commodity systems (laptops, desktops), and the LPDDRx

standards have offered similar bandwidths at lower power. These

serve embedded systems as well as supercomputers and data cen-

ters that require high performance and high capacity but have strict

power budgets.

The GDDRx SGRAM standards have been designed for graph-

ics subsystems and have focused on even higher bandwidths than

DDRx and LPDDRx, sacrificing channel capacity. SGRAMs are not

specified to be packaged in DIMMs like the DDRx and LPDDRx

SDRAMs. Each SGRAM is packaged as a wide-output device, typ-

ically coming in x16 or x32 datawidths, and they often require

significant innovations in the interface to reach their aggressive

speeds.

For example, GDDR5 runs up to 6Gbps per pin, GDDR5X is

available at twice that, and the protocols require a new clock domain

not seen in DDRx and LPDDRx standards: Addresses are sent at

double-data-rate on the system clock, and the data strobe now runs

a higher frequency than the system clock, as well as no longer

being bi-directional. This has the beneficial effect of eliminating

the dead bus cycle shown in Figure 4 as the łDQS hand-off,ž as the

strobe line need not idle if it is never turned around. Instead of

being source-synchronous, the data strobe is unidirectional and

used by the DRAM for capturing data. For capturing data at the

controller side during data-read operations, the controller trains

each GDDR5 SGRAM separately to adjust its data timing at a fine

granularity relative to its internal clock signal, so that the data for

each SGRAM arrives at the controller in sync with the controller’s

internal data clock.

In our simulations, we use an organization as shown in Fig-

ure 5(c): a 64-bit data bus made from four x16 GDDR5 chips placed

side-by-side.

3.4 High Bandwidth Memory (HBM)

JEDEC’s High Bandwidth Memory uses 3D integration to package

a set of DRAMs; it is similar to the DIMM package shown in Fig-

ure 5(d) in that it gathers together eight separate DRAM devices

into a single parallel bus. The difference is that HBM uses through-

silicon vias (TSVs) as internal communication busses, which enables

far wider interfaces. Whereas a DDRx-based DIMM like that in

Figure 5(a) gangs together eight x8 parts (each part has 8 data pins),

creating a bus totaling 64 bits wide, HBM gangs together eight x128

parts, creating a bus totaling 1024 bits wide. This tremendous width

is enabled by running the external communications over a silicon

interposer, which supports wire spacing far denser than PCBs. This

approach uses dollars to solve a bandwidth problem, which is al-

ways a good trade-off. JEDEC calls this form of packaging ł2.5D

integration.ž

The 8 channels of HBM can operate individually or cooperatively.

HBM2 standard also introduced pseudo-channel, which further

divide one channel into two pseudo channels.
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In our simulations, we use the organization as shown in Fig-

ure 5(d): a 1024-bit data bus that is subdivided into four, eight,

channels or sixteen pseudo-channels (8 for most studies). HBM1

gives 128GB/s total bandwidth; HBM2 gives 256GB/s total band-

width.

3.5 Hybrid Memory Cube (HMC)

Hybrid Memory Cube is unique in that, unlike all the other DRAM

architectures studied herein, the DRAM interface is not exported;

instead, HMC packages internally its own DRAM controllers. As

shown in Figure 5(e), it includes a 3D-integrated stack of DRAMs

just like HBM, but it also has a non-DRAM logic die at the bottom

of the stack that contains three important things:

(1) A set of memory controllers that control the DRAM. HMC1

has 16 internal controllers; HMC2 has up to 32.

(2) The interface to the external world: a set of two or four high-

speed ports that are independent of each other and transmit

a generic protocol, so that the external world need not use

the DRAM protocol shown in Figure 3. Link speed and width

can be chosen based on needs.

(3) An interconnect that connects the I/O ports to the controllers.

Communication is symmetric: requests on any link can be

directed to any controller, and back.

For most of the studies, we use two 15Gbps link configurations

of HMC and HMC2 (120GB/s total bandwidth), because that is

sufficient for the needs of the workload. At the end of the paper, we

present a stress-test that significantly increases thememory-request

rate, at which point we study 4-link and higher speed configurations

as well.

4 EXPERIMENTAL SETUP

We run a newly updated version of DRAMsim [50, 58] within the

gem5 simulator. The following sections elaborate.

Table 1: Gem5 Setup

CPU
Gem5 DerivO3 CPU model,

x86 architecture, 4-core

Core
4GHz, Out-of-order, 8-fetch, 8-issue,

192 reorder buffer entries

L1 I-Cache
per-core, 32KB, 2-way associative,

64 Byte cache line, LRU

L1 D-Cache
per-core, 64KB, 2-way associative,

64 Byte cache line, LRU

L2 Cache
shared, MOESI protocol, 8MB,

8-way associative, 64 Byte cache line, LRU

Workloads
bzip2, gcc, GemsFDTD, lbm, mcf, milc,

soplex, STREAM, GUPS, HPCG

4.1 Simulation Setup

We configure gem5 to simulate an average desktop processor: x86-

based, 4-core, out-of-order. The detailed configuration is in Table 1.

From several suites, we select benchmarks to exercise the mem-

ory system, including those from SPEC2006 [17] that are memory-

bound according to [22]. These benchmarks have Cycles per Instruc-

tion (CPI) ranging from 2 to 14, representing moderate to relatively

intensive memory workloads. We also simulate STREAM and GUPS

from the HPCC benchmark suite [38]. STREAM tests the sustained

bandwidth, while GUPS exercises the memory’s ability to han-

dle random requests. Finally we use HPCG [13], high-performance

conjugate gradients, which represents memory-intensive scientific

computing workloads. We ran four copies of each workload, one on

each core of the simulated processor. Gem5 is configured to run in

system-emulation mode, and all the benchmarks are fast-forwarded

over the initialization phase of the program, and then simulated

with the DerivO3 Gem5 CPU model for 2 billion instructions (500

million per core).

4.2 DRAM Simulator Overview

An updated version of DRAMsim2 models the new memory tech-

nologies studied herein.

As with DRAMsim2 [50], the simulator is validated against Ver-

ilogmodels for correctness. The following subsections provide some

details of the simulator’s inner workings.

Scheduling and Page Policy: A First-ReadyśFirst-Come-First-

Served (FR-FCFS) [47] scheduling policy combined with Minimalist

Open-Page policy [30] is used in the memory controller design.

FR-FCFS can reduce the latency and improve throughput by sched-

uling overlapped DRAM commands while Minimalist Open-Page

prevents row-buffer starvation and thus improves fairness. We ap-

ply this scheme to all memory controllers except for HMC, because

HMC only operates in strict close-page mode.

DRAM Address Mapping: To reduce row buffer conflicts and

exploit parallelism among DRAM banks, we interleaved the DRAM

addresses in the pattern of row-bank-bankgroup-column (from MSB

to LSB). For configurations with multiple channels or ranks, we

also interleaved the channel/rank bits in between the row-address

bits and bank-ad-dress bits. Note that DDR3 has no bank group, and

so this is ignored. Another exception: HMC enforces a close-page

policy that does not take advantage of previously opened pages,

and thus putting column address bits on the LSB side would not

be beneficial. Therefore we adopt the address-mapping scheme

recommended by the HMC specification, which is row-column-

bank-channel (from MSB to LSB).

HMC Interface: Different from all other DRAMprotocols, HMC

uses high-speed links that transmit a generic protocol between the

CPU and HMC’s internal vault controllers.

The packets are broken down to flits to be sent across the internal

crossbar, which has two layers: one for requests and another for

responses, to avoid deadlocks.

Refresh Policy: All of the DRAM protocols simulated in this

work use a per-rank auto-refresh schemeÐthat is, a refresh com-

mand is issued automatically by the controller to all the banks

within a rank at the specified rate.

DRAM Parameters:

Several of the most important parameters are listed in Table 2,

including tRCD, tRAS, tRP, and tCL/CWL.
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Table 2: DRAM Parameters

DRAM

Type
Density

Device

Width
Page Size

# of Banks

(per rank)
Pin Speed

Max.

Bandwidth [3]
tRCD

(ns)

tRAS

(ns)

tRP

(ns)

CL/CWL

(ns)

DDR3 8Gb 8 bits 2KB 8 1.866Gbps 14.9GB/s 14 34 14 14/10

DDR4 8Gb 8 bits 1KB 16 3.2Gbps 25.6GB/s 14 33 14 14/10

LPDDR4 6Gb 16 bits 2KB 8 3.2Gbps 25.6GB/s -[5] -[5] -[5] -[5]

GDDR5 8Gb 16 bits 2KB 16 6Gbps 48GB/s 14/12[4] 28 12 16/5

HBM[1] 4Gbx8 128 bits 2KB 16 1Gbps 128GB/s 14 34 14 14/4

HBM2[1] 4Gbx8 128 bits 2KB 16 2Gbps 256GB/s 14 34 14 14/4

HMC[1] 2Gbx16 32 bits 256 Bytes 16 2.5Gbps[2] 120GB/s 14 27 14 14/14

HMC2[1] 2Gbx32 32 bits 256 Bytes 16 2.5Gbps[2] 320GB/s 14 27 14 14/14

[1] HBM and HMC have multiple channels per package, therefore the format here is channel density x channels.

[2] The speed here is HMC DRAM speed, simulated as 2.5Gbps according to [49]. HMC link speed can be 10ś30Gbps.

[3] Bandwidths for DDR3/4, LPDDR4 and GDDR5 are based on 64-bit bus design; HBM and HBM2 are 8×128 bits wide;

Bandwidth of HMC and HMC2 are maximum link bandwidth of all 4 links. We use 2 links 120GB/s in most simulations.

[4] GDDR5 has different values of tRCD for read and write commands.

[5] We are using numbers from a proprietary datasheet, and they are not publishable.

Most of the parameters are based on existing product datasheets

or official specifications. Some parameters, however, are not publicly

availableÐfor example, some timing parameters of HBM and HMC

are not specified in publicly available documentation. Previous

studies [31, 49] have established reasonable estimations of such

parameters, and so we adopt the values given in these studies.

5 EVALUATION

The following sections present our results and analysis.

5.1 Overall Performance Comparisons

Figure 6 shows performance results for the DRAM architectures

across the applications studied, as average CPI. To understand the

causes for the differences, e.g. whether from improved latency or

improved bandwidth, we follow [11] and [4]: we run multiple sim-

ulations to distinguish between true execution time and memory

overhead and distinguish between memory stalls that can be elimi-

nated by simply increasing bandwidth and those that cannot.

The tops of the orange bars indicate the ideal CPI obtained with

a perfect primary memory (zero latency, infinite bandwidth). The

remaining portion above the orange bars is the overhead brought

by primary memory, further broken down into stalls due to lack

of bandwidth (red bar) and stalls due to latency (green bar). For

example, the best CPI that could be obtained from a perfect mem-

ory for STREAM, as shown in Figure 6, is 4.3. With DDR3, the

DRAM memory contributes another 4.6 cycles to the execution

time, making the total CPI 8.9. Among these 4.6 cycles added by

DDR3, only 0.3 cycles are stalls due to lack of memory bandwidth;

the remaining 4.3 cycles are due to memory latency.

The first thing to note is that the CPI values are all quite high.

Cores that should be able to retire 8 instructions per cycle are seeing

on average one instruction retire every two cycles (bzip2), to 30

cycles (GUPS). The graphs are clear: more than half of the total

overhead is memory.

As a group, the highest CPI values are single-rank (DDR3-1,

DDR4-1) or single channel (LPDDR4-1) configurations . Single rank

configurations exposes the tFAW protocol limitations [20, 21], be-

cause all requests must be satisfied by the same set of devices.

Having only one rank to schedule into, the controller cannot move

to another rank when the active one reaches the maximum acti-

vation window; thus the controller must idle the requisite time

before continuing to the next request when this happens. The ef-

fect is seen when comparing DDR3-1 to DDR3, an average 21%

improvement from simply using a dual-rank organization; or when

comparing DDR4-1 to DDR4, an average 14% improvement from

simply moving to dual-rank from single-rank.

LPDDR4-1 and LPDDR4 has the same bandwidth, but different

configurations (64×1 vs 16×4 buses). There is a 22% improvement

when using the quad-channel configuration, indicating that using

more parallelism to hide longer data burst time works well in this

case.

From there, the comparison is DDR3 to LPDDR4 to DDR4, and

the improvement goes in that direction: LPDDR4 improves onDDR3

performance by an average of 8%, and DDR4 improves on LPDDR4

by an average of 6%. This comes from an increased number of

internal banks (DDR4 has 16 per rank; LPDDR4 has 8 per rank but

more channel/ranks, DDR3 has only 8 per rank), as well as increased

bandwidth. The reason why LPDDR4, having more banks, does not

outperformDDR4 is its slower DRAM timings, whichwas optimized

for power but not performance.

Next in the graphs is GDDR5, which has almost twice the band-

width of DDR4 and LPDDR4, but because it is a single-rank design

(GDDR5 does not allow multi-drop bus configurations), it behaves

like the other single-rank configurations: DDR3-1, DDR4-1, and

LPDDR4-1, which is to say that it does not live up to its potential

under our testing setup.

The best-performing DRAM architectures are HBM and HMC:

the workloads are split roughly evenly on which DRAM is łbest.ž

One may be not impressed by the performance improvement here:

though HBM and HMC have maximum bandwidths of 128GB/s and

120GB/s, roughly 8 and 13 times more than single-rank DDR3, they
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memories are saturated by 3ns per request. HBM and HBM2 reach

their peak bandwidths at around 1 to 2 requests per ns , getting

32GB/s and 63GB/s respectively. HMC and HMC2 reach their peak

bandwidth at the rate of 4 to 5 requests per ns , reaching 121GB/s

and 225GB/s. The difference between HMC and HMC2 here is the

number of vaults (channels) they have, 16 vs 32. The effective pin

bandwidth of each vault is 10GB/s, meaning that both HMC and

HMC2 reach about 75% of the peak internal bandwidths.

Looking at the sequential results in the right-hand graph, the

high-speed DRAMs, e.g. GDDR5, HBM and HBM2, gain signif-

icantly more bandwidth than they do with the random stream.

HMC and HMC2 only changes slightly, once again shows its steady

performance regarding different types of worklaods.

The stress tests explain the bandwidth/latency relationship ex-

plained at the beginning of the paper in Figure 1. As the request rate

is increased, the DRAMs go through the constant region into the

linear region (where the curves start to increase noticeably; note

that the x-axis is logarithmic, not linear). Where the stress test’s

bandwidth curves top out, the DRAM has reached its exponential

region: it outputs its maximum bandwidth, no matter what the

input request rate, and the higher the request rate, the longer that

requests sit in the queue waiting to be serviced.

The stress-test results show that any processing node with nu-

merous cores is going to do extremely well with the high-end,

multi-channel, high-bandwidth DRAMs.

6 CONCLUSIONS

The commodity-DRAM space today has a wide range of options

from low power, to low cost and large capacity, to high cost and

high performance. For the single-channel (or single package) system

sizes that we study, we see that modern DRAMs offer performance

at whatever bandwidth one is willing to pay the power cost for,

as the interface power dominates all other aspects of operation.

Note that this would not be the case for extremely large systems:

at large capacities, refresh power may also be very significant and

dominate other activities. However, at the capacities we study, it is

the transmission of bits that dominates power; thus, this provides an

important first metric for system design: determine the bandwidth

required, and get it.

Our studies show that bandwidth determines one’s execution

time, even for the modest 4-core CPU studied herein, as the higher

bandwidths and, more importantly, the parallelism provided in

the high-performance packages, assure that queuing delays are

minimized. High-bandwidth designs such as HMC and HBM can

reduce end-to-end application execution time by 2ś3x over DDRx

and LPDDR4 architectures. This translates to reducing the memory

overhead from over half of the total execution time to less than 30%

of total execution time. The net result: previously memory-bound

problems are turned into compute-bound problems, bringing the

focus back to architectural mechanisms in the processor that can

improve CPI.
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